EvoGS: 4D Gaussian Splatting as a Learned Dynamical System

Arnold Caleb Asiimwe
Princeton University

asiimwe@cs.princeton.edu

Abstract

We reinterpret 4D Gaussian Splatting as a continuous-time
dynamical system, where scene motion arises from integrat-
ing a learned neural dynamical field rather than applying
per-frame deformations. This formulation, which we call
EvoGS, treats the Gaussian representation as an evoly-
ing physical system whose state evolves continuously un-
der a learned motion law. This unlocks capabilities ab-
sent in deformation-based approaches: (1) sample-efficient
learning from sparse temporal supervision by modeling
the underlying motion law; (2) temporal extrapolation en-
abling forward and backward prediction beyond observed
time ranges; and (3) compositional dynamics that allow
localized dynamics injection for controllable scene syn-
thesis. Experiments on dynamic scene benchmarks show
that EvoGS achieves better motion coherence and temporal
consistency compared to deformation-field baselines while
maintaining real-time rendering.'

1. Introduction

Fig. | “Everything flows”—Heraclitus [23]

Dynamic scene reconstruction has traditionally focused
on recovering time-varying geometry and appearance from
video. While early progress was driven by dynamic ex-
tensions of NeRF [36], these approaches rely on learned
deformation fields that warp a canonical scene to each
timestep [29, 39, 41, 42]. Although conceptually elegant,
deformation-based NeRFs require dense and regular frame
sampling, and their deformation fields often collapse when
supervision becomes sparse or irregular. They are also com-
putationally costly, as every frame requires evaluating both
the canonical radiance field and its deformation.

To improve scalability and stability, subsequent works
represent time as an explicit axis in a factorized 4D grid [3,
5, 44], enabling faster, more robust rendering. However,
these grid-based models still treat time as a discrete index

IProject page: https://arnold-caleb.github.io/evogs.

Carl Vondrick
Columbia University

vondrick@cs.columbia.edu

Roll forward

Sample efficient

Forward and backward prediction

Dynamics injection

Figure 1. EvoGS learns a continuous-time dynamical system that
governs the evolution of Gaussian primitives. A neural velocity
field vy drives their motion through numerical integration. Un-
like discrete deformation-based approaches (Fig. 2), EvoGS re-
constructs unseen timesteps by following the learned dynamics,
enabling continuous-time extrapolation and controllable motion
composition.

and therefore cannot reason over missing frames or extrap-
olate beyond the observed temporal window. Their motion
representation is descriptive rather than predictive.
Building upon explicit representations, recent advances
in 4D Gaussian Splatting [10, 20, 32, 49, 52] model dy-
namic scenes by updating Gaussian parameters at dis-
crete timestamps. While these approaches differ in how
the updates are predicted—ranging from independent per-
frame Gaussian clouds [34] to framewise deformation fields
[8, 17, 49, 52] via a canonical-to-world mapping (Fig. 2)—
they all share the same discrete-time assumption: motion
is represented only at the observed frames. As a result,
they struggle to maintain coherent trajectories when tem-
poral observations are sparse, irregular, or missing entirely.
Unfortunately, partial observability is the norm outside
controlled lab environments. Real-world video streams
suffer from missing frames due to camera outages, ir-
regular motion-capture sessions, rolling-shutter artifacts,
and dropped frames caused by unreliable networks. In
such settings, discrete deformation-based methods often fail
to maintain physically meaningful trajectories at unseen
timesteps: NeRF variants may freeze or produce ghost arti-

https://arnold-caleb.github.io/evogs

facts , while 4D Gaussian methods can smoothly interpolate
yet drift away from the correct motion path (Fig. 0).

This reveals a fundamental limitation: when time is
discretized, models cannot robustly interpolate missing
frames or reliably predict future ones. Yet both capabili-
ties are crucial. Robust interpolation enables faithful recon-
struction under sparse temporal observations, and the ability
to predict future motion opens the door to high-stakes appli-
cations where anticipating outcomes—such as potential col-
lisions or system failures—can prevent catastrophic events.
To address these shortcomings, we propose to reinterpret
dynamic scene modeling through the lens of continuous-
time dynamical systems rather than discrete collections of
warped frames. In our formulation, each Gaussian primi-
tive behaves like a particle governed by an underlying ve-
locity field vg(x,t). Rather than predicting per-frame dis-
placements, the model learns this velocity field directly, and
Gaussian parameters evolve through numerical integration
(Fig. 1). This allows the scene to be rendered at any con-
tinuous moment—including frames that were unobserved
during training or timesteps far beyond the original video.
We call this framework EvoGS.

By treating 4D Gaussian splatting as a learned dynamical
system, EvoGS inherits the rendering efficiency of explicit
Gaussians while enabling capabilities absent in prior work:
Sparse temporal reconstruction (§4.1): EvoGS learns co-
herent motion from as little as one-third of the total frames.
Future and past prediction: Continuous integration supports
extrapolation for simulating unseen motion. Compositional
motion editing: The learned velocity field enables blending,
injecting, or modulating local dynamics (§4.2).

Conceptually, EvoGS echoes ideas from dynamical sys-
tems, neural ODEs [6], and filtering-based models [18, 19]
and combines prediction from continuous dynamics, cor-
rection from observations, and stabilization from temporal
consistency priors. This yields coherent scene evolution
even under sparse supervision and enables reliable recon-
struction and prediction beyond the capabilities of existing
deformation-based methods.

2. Related Work

We review three areas that inform our approach. Sec. 2.1
covers continuous-time dynamical formulations that mo-
tivate viewing scene evolution through learned velocity
fields. Sec. 2.2 surveys dynamic neural scene representa-
tions, and Sec. 2.3 discusses recent Gaussian approaches
incorporating motion priors or learned dynamics.

2.1. Dynamical Formulations

Modeling time-varying physical systems has a long history
in computer graphics and physics-based simulation, from
early elastically deformable models [47] to classical fluid
solvers [1, 46]. More recent work incorporates differen-

Canonical-to-world mapping

025

. - .
| 82\& (< >y)/ // ’Q\
| Eo ez _—)

v

Co.s
Continuous-time dynamical system

Figure 2. Top: Canonical deformation methods assign each times-
tamp an independent mapping from a shared canonical space to
produce a set of per-frame transformations (learn what the scene
looks like at each time t). Bottom: EvoGS instead learns a contin-
uous velocity field that governs Gaussian evolution through time.
Dynamics arise from integrating this field to produce reversible
trajectories and coherent motion between arbitrarily spaced times-
tamps. The swirling field visualization shows how local dynamical
structure emerges and how injected motion (and red) blends
into the learned global flow.

tiable physics and learning-based surrogates, enabling neu-
ral networks to approximate or constrain physical dynam-
ics [9, 11, 12,22, 38, 48].

Recent approaches [7, 54] combine differentiable render-
ing with physics-driven simulation to reconstruct or predict
fluid motion directly from video, reflecting a shift toward
neural dynamical systems that jointly model perception, ge-
ometry, and motion. These ideas align with methods that
approximate continuous evolution through learned velocity
fields rather than discrete timesteps—most notably neural
ODE:s [6]. Within the broader context of physics-informed
learning, further works demonstrate how learned surro-
gates can accelerate fluid simulation [24], how differen-
tiable solvers enable gradient-based reconstruction of fluid
phenomena from imagery [45], and how PDE-constrained
neural networks infer motion from sparse observations [15].

2.2. Dynamic Scene Representations

The introduction of 3D Gaussian Splatting [21] marked a
shift from implicit neural fields [37, 39, 40] to explicit, dif-
ferentiable point-based primitives for radiance field render-
ing. By representing a scene as a collection of anisotropic
Gaussians with learnable position, orientation, opacity, and
color, these methods achieve high-fidelity results through
differentiable rasterization rather than volumetric integra-
tion. Their efficiency and photorealistic quality have estab-
lished Gaussian splatting as a leading paradigm for explicit
neural scene representation.

Spatial temporal feature encoder

Dynamical law

o’
A A

7

Past prediction

ODE Solver

! dx(t) |
; T
i () |

! dat

i ds(t) |

: | TN
Future prediction g
ODE Solver

Dynamical Field

Figure 3. Overview of EvoGS: Given input frames (

) with photometric supervision, each Gaussian is embedded using 4D spatiotem-

poral features and evolved through a learned continuous-time velocity field. A neural dynamical law predicts time derivatives of Gaussian

attributes, and an ODE solver integrates these dynamics forward or backward to produce unseen future and past states (

purely from continuous-time evolution.

Extending Gaussian splatting to dynamic scenes requires
modeling how Gaussian parameters evolve through time
while maintaining temporal coherence and rendering effi-
ciency. Most formulations have generalized static Gaus-
sians into the spatiotemporal domain by learning per-frame
transformations of a canonical configuration, effectively
treating each timestep as an independent deformation of the
scene [8, 17, 49, 52]. Subsequent approaches introduced
temporally shared Gaussian attributes to improve coher-
ence [56], surfel-based deformation models for finer con-
trol of local motion and geometry [35], and disentangled or
editable formulations that separate static and dynamic com-
ponents or apply segmentation-based priors for controllable
motion [26, 28].

2.3. Dynamical Gaussian Methods

Recent extensions of Gaussian splatting have introduced ex-
plicit motion modeling and learned dynamics, moving be-
yond frame-wise deformations—several works extend static
3D Gaussians to dynamic settings through temporally cou-
pled transformations, motion-aware attributes, or latent mo-
tion factorization [13, 16, 25, 28]. Others focus on mo-
tion guidance and continuous motion cues to handle large
or blurred motions [27, 57]. Inspired by physical sys-
tems, some approaches embed motion laws within Gaussian
primitives, treating each as a particle evolved under con-
tinuum or flow-based dynamics [51]. Other formulations
express temporal variations—such as position or covari-
ance—as compact parametric functions of time, e.g., poly-

), which arise

nomial or Fourier expansions [31]. Self-supervised variants
further learn scene flow for dynamic or unlabeled environ-
ments [50].

Despite these advances, existing methods still rely on
discrete temporal updates or per-frame optimization, requir-
ing dense supervision and struggling to extrapolate motion
beyond observed frames. In contrast, our approach models
Gaussian evolution as a continuous-time process governed
by aneural velocity field vg(x, t), enabling controllable mo-
tion composition, sparse-frame training, and temporally co-
herent rollouts.

3. Method

This section introduces EvoGS (Fig. 3), a continuous-time
formulation of dynamic Gaussian splatting. We first out-
line the model design (Sec.3.1), then describe the feature
encoder (Sec.3.2), the neural dynamical law (Sec.3.3), and
a Kalman-inspired stabilization mechanism (Sec.3.4). We
conclude with the rendering process and training objective
(Sec.3.5).

3.1. Overview

We treat each Gaussian as a particle evolving under a
learned continuous-time dynamical system. Its trajectory
is defined by a neural velocity field conditioned on lo-
cal spatiotemporal features. Following standard practice
in Gaussian Splatting [21], all Gaussians are initialized
from a point cloud reconstructed via structure-from-motion
(SfM). EvoGS (Fig. 3) then consists of: (1) a 4D feature

encoder that produces local embeddings from a factorized
space—time representation (e.g., HexPlane [3]), (2) a neural
dynamical law predicting instantaneous time derivatives of
Gaussian attributes, and (3) a differentiable ODE integrator
that advances these states in time.

3.2. Spatiotemporal Feature Encoding

Each Gaussian center p; = (x;,y;, 2;) at time ¢ is embed-
ded via bilinear interpolation over six space—time factoriza-
tion planes {Py,P,., Py, Py, Py, Py}

fz(t) = (I)(piat)a

where ® denotes the differentiable lookup from the 4D grid.
These features encode local geometry and motion cues and
condition the velocity field used in the dynamical update.

3.3. Neural Dynamical Law

Each Gaussian primitive has a state
Xi(t) = [pi(t)7 Ri(t)v Si(t)v Ci(t)’ ai(t)]v

where p; is its 3D position, R;; its rotation (parameterized
via an exponential-map update), S; its anisotropic scale, c;
its color, and «; its opacity. The state evolves according to
the continuous-time ODE

Xm'
dt
where vy is a lightweight MLP predicting derivatives of po-
sition, rotation, and scale. We integrate this ODE with a dif-

ferentiable solver (RK4), enabling both forward and back-
ward temporal propagation:

= VG(Xi(t)v fz(t)v t)» (1)

Xi(tl) = RK4(X1(t0), to, At, Vg),

Xi(to) = RK4(X1(t1), tl, 7At, Vg). (2)

Bidirectional integration yields reversible dynamics and al-
lows the model to propagate motion through missing frames
or ambiguously observed regions.

3.4. Gaussian Waypoints for Motion Stabilization

Continuous ODE integration can accumulate drift over long
temporal horizons due to numerical error and locally under-
constrained motion. In classical filtering, such drift is con-
trolled by alternating prediction and correction steps. While
a full Kalman filter is infeasible here—given nonlinear dy-
namics, millions of latent states, and non-Gaussian render-
ing losses—we adopt a related idea using Gaussian way-
points. During training, a small number of anchor snap-
shots A = {t§a), tga), ...} store the Gaussian states at fixed
times. These anchors act as sparse pseudo-observations of
the underlying dynamical system.

For any target frame at time ¢, we locate the nearest past
anchor () and reinitialize the ODE state using the stored

Gaussian parameters at t(*), then integrate forward from
t(@) to ¢. That way, the effective integration horizon is re-
duces so that drift accumulation is reduced and prevents di-
verging during long rollouts.

Optionally, we penalize deviations between the inte-
grated state and the stored anchor snapshot itself:

> () =%)3,

tla)e A

Eanchor =

where %(t(*)) is the anchor state and x(t(%)) is the state
obtained by integrating from the preceding anchor. This en-
courages consistency with anchor waypoints while still al-
lowing smooth continuous-time evolution between them. In
contrast to classical filters, we do not maintain explicit ve-
locity estimates or covariance; the anchors function solely
as sparse, fixed reference states that constrain long-term in-
tegration.

3.5. Rendering and Objective

At each target timestamp ¢;, the evolved Gaussians G(t1)
are rendered using differentiable Gaussian splatting [21].
Supervision is provided by a standard photometric recon-
struction loss (L1, optionally combined with SSIM/LPIPS).

To encourage stable motion and suppress drift, we in-
clude temporal smoothness on the spatiotemporal planes
(plane TV and time-smoothing), as well as a velocity-
coherence regularizer to encourage nearby Gaussians to
move consistently. When anchor waypoints are enabled, we
apply a soft anchor-consistency term that pulls integrated
states toward stored anchor snapshots.

The full training objective is:

L= £ph0to +)\cohﬁcoh + /\anchorﬁanchor + AIVEIVa (3)

where L., enforces velocity coherence, Lynchor applies the
optional anchor constraint, and £, smooths the spatiotem-
poral feature fields.

4. Experiments

We evaluate EvoGS on synthetic and real-world datasets,
comparing against state-of-the-art dynamic scene recon-
struction methods [3, 44, 49]. Section 4.1 describes imple-
mentation details, datasets, and experimental settings. Sec-
tion 4.2 demonstrates external motion injection and control-
lable dynamics. Section 4.3 provides ablation studies and
analysis.

4.1. Experimental Setup

Implementation Details. Our model is implemented in
PyTorch and trained on a single NVIDIA L40 GPU. We
adopt the optimization settings of [49], with minor adjust-
ments for continuous-time dynamics. To assess tempo-
ral robustness, we primarily evaluate in the sparse-frame

HexPlane

o

Figure 4. Comparison of EvoGS on reconstruction of unseen dynamic human motion on the Jumping Jacks scene. Compared to Hex-
Plane [3] and 4DGS [49], which breakdown for unseen timesteps (e.g., limbs rupturing or blurring)

Split Cookie

udoIy) SUA

ossaxdsyg

GT

Ours 4DGS

Figure 5. Extrapolation on real monocular dynamic scenes. Comparison on Split Cookie, Vrig Chicken, and Espresso sequences, where
the model must predict frames beyond the observed time range. We include comparisons to [43, 44, 52] in suppl. for completeness.

regime by dropping frames during training (Figs. 4, 5, 6, 8).
The datasets used are described next.

Datasets. For synthetic evaluation, we use the D-NeRF
dataset [43], which contains monocular dynamic scenes
with 50-200 frames and randomly varying camera trajec-
tories. For real-world evaluation, we use the Neural 3D
Video (N3DV) dataset [30], which provides multi-view dy-
namic captures with calibrated poses and complex nonrigid
motion, and the Nerfies dataset [39], consisting of monoc-
ular captures with moderate to fast nonrigid motion. All

experiments use the provided camera parameters. For each
sequence, we uniformly subsample frames for training and
evaluation, as detailed below.

Sparse-Frame and Extrapolation Settings. To evaluate
temporal generalization, we train using every k-th frame
(k € {2,4,8,10}) of each sequence. On N3DV (300
frames), this results in only 300/k training frames. We re-
port results for strides k¥ = 2 and k = 8 in Table 1. We also
evaluate future extrapolation (Fig. 6) by training only on the
first 0.75 fraction of frames and predicting all unseen future

Ours HexPlane 4DGS GT

Figure 6. Interpolation on the Hook scene. EvoGS maintains
coherent geometry and motion, whereas HexPlane freezes the dy-
namics and 4DGS produces an over-smoothed intermediate frame.

frames. The same protocol can be applied for backward
rollout, where the learned velocity field is integrated back-
ward to reconstruct earlier frames. The sparse-frame and
extrapolation settings are used consistently across N3DV,
D-NeRF, and Nerfies datasets.

Waypoint initialization To reduce long-term drift dur-
ing continuous integration, we introduce three temporal an-
chors placed at the start, midpoint, and end of each se-
quence. Each anchor corresponds to a 3D Gaussian state
rendered at its timestamp and acts as a soft constraint that
keeps the learned trajectories consistent over long time hori-
Zons.

Metrics. We evaluate reconstruction quality using stan-
dard photometric metrics: PSNR, SSIM, and LPIPS [55].
All results are reported on held-out frames under the same
sparse-frame or extrapolation protocols used in training.

4.2. Compositional and Controllable Dynamics

A key advantage of representing scene motion as a
continuous-time velocity field is enabling controllable mo-
tion synthesis. Since dynamics are encoded as a vector field
we can directly manipulate, mix, or replace portions of the
flow to produce new motion without retraining (Fig. 7).

Velocity field composition and local dynamics injection.
Formally, given two velocity fields—a learned field vy and
an external field vy (e.g., a user-defined motion or a field
borrowed from another model)—we can form a spatially
mixed field, enabling a simple vector-field algebra:

Viix (X, 1) = A(x) vo(x,t) + (1 -)\(x)) Vext(X,1). (4)

where A(x) € [0, 1] is a spatial mask controlling which
region follows which dynamics. This allows selected ob-

Figure 7. Compositional Dynamics injection: By locally blend-
ing a rotational velocity field (indicated by white arrow), EvoGS
can inject new fields into a scene.

jects to inherit new motion. Because EvoGS evolves
Gaussians through continuous-time integration, vy, yields
smooth spatiotemporal transitions. Fig. 7 shows a rotational
field combined injected into the learned field via

v (%, t) = A(x) Vinj(x,8) + (1 — A(x)) vo(x,t). (5)

where vi,j. Gaussians in the masked region follow wviy,
while the rest of the scene continues under vy which allows
new motion to be created without retraining.

Object incompleteness and the need for recomposition.
Injecting a new velocity field into a scene requires a com-
plete 3D representation of the target object. However, the
Gaussians associated with an object G, are often incom-
plete: because training cameras observe the object only
from a subset of angles, large portions of its surface are un-
dersampled or entirely missing. When the object is moved
or rotated, these unseen regions become exposed and pro-
duce severe artifacts.

Geometry completion and reinsertion. We first isolate
the target object using a 3D Gaussian segmentation mask
A(x) [4]. To reconstruct the missing geometry, we render
segmented ground-truth images from the original camera
views and use them as input to Zero123 [33] to synthesize
novel viewpoints that were never observed. These real and
synthesized views supervise a second-pass 3D Gaussian op-
timization applied only to G, enabling densification and
completion of the object’s geometry. The refined Gaussians
are then reinserted into the full scene, and the injected ve-
locity field viy; is applied to them during continuous-time
evolution.

4.3. Ablations and Analysis

Integration order. We compare a fourth-order
Runge—Kutta solver (RK4) to a first-order Euler inte-
grator in Fig. 9. While Euler integration is numerically
cheap, it accumulates drift rapidly and incoherent motion
across different gaussians as the system is rolled forward
or backward in time. RK4, by contrast, produces stable
trajectories and preserves Gaussian structure, however

KPlanes

HexPlane

4DGS

Ours

Ground truth

Figure 8. Interpolation under sparse-frame training on the N3DV “flame salmon” scene. K-Planes [44] and HexPlane [3] largely
freeze the motion when frames are skipped, while 4DGS [49] preserves appearance but smoothes fast-moving regions (e.g., the hand

becomes shortened or smeared).

Table 1. Sparse-frame training results on the N3DV “coffee martini” scene. We evaluate reconstruction fidelity when training on every
k-th frame (here k=2, 8). We include results on training all frames for completion. fRull supervision results are obtained from [49].

| Full supervision | k=2 | k=38
Model PSNRT D-SSIM| LPIPS| PSNRT SSIMT LPIPS| PSNR?T SSIM?T LPIPS|
HexPlane! [3] 31.70 0.014 0.075 26.14 0.830 0.30 24.39 0.782 0.39
KPlanes? [44] 31.63 - - 26.28 0.832 0.29 24.52 0.785 0.39
D-NeRF [43] 29.40 0.028 0.112 23.80 0.801 0.48 23.72 0.721 0.43
Deformable 3DGS [52] 30.52 0.022 0.084 25.40 0.84 0.30 22.12 0.742 0.41
4DGS? [49] 31.15 0.016 0.049 27.65 0.878 0.27 26.45 0.846 0.22
Ours 30.82 0.022 0.085 28.25 0.914 0.20 26.90 0.870 0.26

Extrapolation

Figure 9. Euler integration rapidly accumulates temporal drift.

RK4 produces smooth, consistent trajectories for both interpola-
tion and extrapolation.

Interpolation

Euler

RK4

i
.
\

under extremely long-horizon extrapolation the gaussian
structure starts to fall apart (Fig. 10).

Effect of Gaussian waypoints. Removing Gaussian way-
points increases temporal drift because the ODE is inte-
grated from a single fixed reference state and errors com-
pound over long sequences Tab. 2. Waypoints act as sparse
re-initialization states: at each target timestamp the system
integrates only from the nearest stored anchor, preventing

the accumulation of small numerical errors. Without way-
points, we observe increasing trajectory divergence and no-
ticeable spatial jitter like in Fig. 10.

Sparse-frame robustness. With moderate sparsity (e.g.,
training on every 8th frame), deformation-based and factor-
ized spatiotemporal grids baselines struggle to infer plau-
sible intermediate motion (Fig. 8), while our continuous-
time formulation maintains coherent trajectories through
the learned velocity field. Under extreme sparsity (e.g., one
frame every 20), the dynamics become underconstrained
and the advantage over deformation-based models dimin-
ishes—both behave similarly when temporal supervision is
insufficient. Tab. 1 summarizes performance across spar-
sity levels.

5. Discussion

We show that reconstruction and prediction can be ex-
pressed within the same continuous dynamical space. In-
stead of optimizing per-frame deformations, the model
learns a velocity field that governs scene evolution across
both observed and unobserved timestamps. This shared
representation reduces temporal discontinuities and enables
forward extrapolation and backward rollouts without re-
training. Higher-order integration further stabilizes long-
range behavior (Fig. 9), suggesting that continuous-time

Figure 10. Without Gaussian waypoints, long forward integration causes rollouts to slowly drift and distort the scene

Table 2. Ablation study on ‘“flame salmon scene”: Remov-
ing waypoints, coherence loss, or the HexPlane encoder degrades
long-range prediction. Metrics are reported on frames held out for
t > 0.75 (supervision on ¢ < 0.25).

Model PSNR? SSIM1 LPIPS)
Ours (W/0 Aanchor) 24.1 0.846 0.23
Ours (W/0 Acon) 25.1 0.872 0.23
Ours (w/o hexplane) 233 0.847 0.24
Ours 25.73 0.880 0.20

==

GT future

Failure cases

Figure 11. Failure case: lack of physical reasoning in emergent
dynamics. When presented with scenes requiring true physical
understanding—such as liquid filling a glass—Ev oGS can extrap-
olate the motion of rigid objects (e.g., the hand and cup) but fails
to infer the emergent fluid behavior.

formulations provide a strong inductive bias for modeling
dynamic 3D scenes.

Because motion is represented as a vector field, inject-
ing external velocity fields provides a simple and expressive
mechanism for editing 4D content. This vector-field alge-
bra (Sec: 4.2) enables localized motion synthesis, mixing,
or replacement—all without re-optimizing the entire scene.
Such controllable dynamics hint at a broader direction: dy-
namic scene representations that behave like world models,
in which motion rules can be modified, composed, or con-

ditioned on external signals.

Our formulation suggests that continuous-time veloc-
ity fields may serve as a useful interface between recon-
struction methods and video-generation models. Generative
world models [2, 14, 53] typically operate on latent tokens
or coarse implicit grids, whereas EvoGS evolves explicit
3D primitives that are directly renderable. Training such dy-
namical fields at larger scale—or conditioning them on text,
audio, or actions—could enable generative 4D scenes with
physically plausible, editable dynamics. Dynamic Gaussian
splatting may thus form a bridge between reconstruction-
centric 3D methods and generative video models.

Limitations and opportunities. Our approach is data-
driven and inherits the biases and ambiguities present in
the training video. In scenarios requiring genuine causal
or physical reasoning, the learned velocity field may fail to
generalize. For example, in sequences where a hand be-
gins to pour water into a glass (Fig. 11), EvoGS can ex-
trapolate the hand’s motion but cannot infer fluid behavior
or anticipate water—glass interaction—phenomena that fall
outside the spatiotemporal patterns observed in the train-
ing frames. Likewise, under extreme temporal sparsity, the
dynamics become underconstrained and gradually regress
toward deformation-like behavior.

6. Conclusion

We introduced EvoGS, a dynamic Gaussian framework that
models scene evolution through a continuous-time velocity
field. Integrating Gaussian parameters over time yields a
unified representation for reconstruction, interpolation, ex-
trapolation, and controllable dynamics, without relying on
per-frame deformations.

Acknowledgements This research was primarily done
while ACA was an undergraduate at Columbia University
and completed while ACA was a graduate student at Prince-
ton University. We thank Prof. Felix Heide for insightful
conversations during the preparation of the paper, and the
LI. Rabi Scholars program at Columbia for supporting this
research.

References

(1]

(2]

(3]

(4]

(5]

(6]

[7

—

(8]

(9]

(10]

(1]

[12]

[13]

(14]

[15]

[16]

Robert Bridson. Fluid Simulation for Computer Graphics. A
K Peters, 2008. 2

J. Bruce, J. Schrittwieser, M. Mirza, et al. Genie: Generative
interactive environments. arXiv preprint arXiv:2402.15329,
2024. 8

Ang Cao and Justin Johnson. Hexplane: A fast representa-
tion for dynamic scenes. CVPR, 2023. 1,4, 5,7

Jiazhong Cen, Jiemin Fang, Chen Yang, Lingxi Xie, Xi-
aopeng Zhang, Wei Shen, and Qi Tian. Segment any 3d
gaussians. arXiv preprint arXiv:2312.00860, 2023. 6

Anpei Chen, Zexiang Zhang, G. Wang, R. Ding, X. Liu, J.
Zhang, and J. Yu. TensoRF: Tensorial radiance fields. In
ECCV, pages 272-289, 2022. 1

Ricky T. Q. Chen, Yulia Rubanova, Jesse Bettencourt,
and David Duvenaud. Neural ordinary differential equa-
tions. In Advances in Neural Information Processing Sys-
tems (NeurlIPS), 2018. 2

Yitong Deng, Hong-Xing Yu, Diyang Zhang, Jiajun Wu, and
Bo Zhu. Fluid simulation on neural flow maps. ACM Trans-
actions on Graphics (TOG), 42(6):244:1-244:15, 2023. 2
Bardienus P. Duisterhof, Zhao Mandi, Yunchao Yao, Jia-
Wei Liu, Jenny Seidenschwarz, Mike Zheng Shou, Deva Ra-
manan, Shuran Song, Stan Birchfield, Bowen Wen, and Jef-
frey Ichnowski. Deformgs: Scene flow in highly deformable
scenes for deformable object manipulation. In Proceedings
of the 16th International Workshop on the Algorithmic Foun-
dations of Robotics (WAFR), 2024. 1, 3

Michael Eckert and Nils Thuerey. Scalarflow: A large-scale
volumetric data set of real-world scalar transport flows for
computer animation and machine learning. ACM Transac-
tions on Graphics (TOG), 38(4):1-15, 2019. 2

Yutao Feng, Xiang Feng, Yintong Shang, Ying Jiang, Chang
Yu, Zeshun Zong, Tianjia Shao, Hongzhi Wu, Kun Zhou,
Chenfanfu Jiang, et al. Gaussian splashing: Dynamic
fluid synthesis with gaussian splatting. arXiv preprint
arXiv:2401.15318, 2024. 1

Ernst Franz and Nils Thuerey. Global neural flow: Learning
generalizable fluid dynamics from visual data. ACM Trans-
actions on Graphics (TOG), 40(6):1-14, 2021. 2

James Gregson, Ivo Ihrke, and Wolfgang Heidrich. From
capture to simulation: Connecting fluid reconstruction and
simulation. ACM Transactions on Graphics (TOG), 33(4):
1-11, 2014. 2

Zhiyang Guo, Wengang Zhou, Li Li, Min Wang, and
Hougiang Li. Motion-aware 3d gaussian splatting for
efficient dynamic scene reconstruction. arXiv preprint
arXiv:2403.11447,2024. 3

David Ha and Jiirgen Schmidhuber. World models. arXiv
preprint arXiv:1803.10122, 2018. 8

Mouhammad El Hassan, Ali Mjalled, Philippe Miron, Mar-
tin Monnigmann, and Nikolay Bukharin. Machine learn-
ing in fluid dynamics—physics-informed neural networks
(pinns) using sparse data. Fluids, 10(9):226, 2025. 2

X Hu et al. Motion decoupled 3d gaussian splatting for dy-
namic object representation with large motion from a monoc-

(17]

(18]

(19]

[20]

(21]

(22]

(23]

[24]

[25]

(26]

(27]

(28]

(29]

(30]

ular camera. AAAI Conference on Artificial Intelligence
(AAAI) 2025, 2025. 3

Yi-Hua Huang, Yang-Tian Sun, Ziyi Yang, Xiaoyang Lyu,
Yan-Pei Cao, and Xiaojuan Qi. Sc-gs: Sparse-controlled
gaussian splatting for editable dynamic scenes. arXiv
preprint arXiv:2312.14937,2023. 1, 3

Rudolph Emil Kalman. A new approach to linear filtering
and prediction problems. Journal of Basic Engineering, 82
(1):35-45, 1960. 2

Rudolph E. Kalman and Richard S. Bucy. New results in
linear filtering and prediction theory. Journal of Basic Engi-
neering, 83(1):95-108, 1961. 2

Bernhard Kerbl, Georgios Kopanas, Thomas Leimkiihler,
and George Drettakis. 3d gaussian splatting for real-time
radiance field rendering. ACM Transactions on Graphics, 42
(4),2023. 1

Bernhard Kerbl, Georgios Kopanas, Thomas Leimkiihler,
and George Drettakis. 3d gaussian splatting for real-time
radiance field rendering. ACM Transactions on Graphics, 42
(4):1-14,2023. 2, 3, 4

Byungsoo Kim, Vinicius C. Azevedo, Markus Gross, and
Nils Thuerey. Deep fluids: A generative network for pa-
rameterized fluid simulations. Computer Graphics Forum
(Eurographics), 38(2):59-70, 2019. 2

G.S. Kirk, J.E. Raven, and M. Schofield. The Presocratic
Philosophers. Cambridge University Press, 1983. Discus-
sion of Heraclitus’ doctrine of flux, commonly paraphrased
as “everything flows”. 1

Dmitry Kochkov, Amit Maity, Max Zwicker, Nils Thuerey,
and Justin Knoll. Machine learning—accelerated computa-
tional fluid dynamics. Proceedings of the National Academy
of Sciences, 118(20):¢2101784118, 2021. 2

Agelos Kratimenos, Jiahui Lei, and Kostas Daniilidis.
Dynmf: Neural motion factorization for real-time dynamic
view synthesis with 3d gaussian splatting. In European Con-
ference on Computer Vision (ECCV) 2024, 2024. 3
Youngjoong Kwon, Minhyuk Kim, Seungyong Kim,
Jeong Joon Park, Jonghyun Choi, and Jaesik Kim. Efficient
editable 4d gaussian fields for dynamic scene rendering. In
Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition (CVPR), 2025. 3

Jungho Lee, Donghyeong Kim, Dogyoon Lee, Suhwan Cho,
Minhyeok Lee, Wonjoon Lee, Taeoh Kim, Dongyoon Wee,
and Sangyoun Lee. Comogaussian: Continuous motion-
aware gaussian splatting from motion-blurred images. arXiv
preprint arXiv:2503.05332, 2025. 3

Jung-Woo Lee, Jae-Han Kim, and Jaesik Kim. Fully ex-
plicit dynamic gaussian splatting for real-time dynamic view
synthesis. In European Conference on Computer Vision
(ECCV),2024. 3

Tianye Li, Mira Slavcheva, Michael Zollhoefer, Simon
Green, Christoph Lassner, Changil Kim, Tanner Schmidt,
Steven Lovegrove, Michael Goesele, Richard Newcombe,
et al. Neural 3d video synthesis from multi-view video. In
CVPR, 2022. 1

Tianye Li, Mira Slavcheva, Michael Zollhofer, Simon Green,
Christoph Lassner, Changil Kim, Tanner Schmidt, Steven

(31]

(32]

(33]

(34]

(35]

(36]

(37]

(38]

(39]

[40]

[41]

[42]

[43]

Lovegrove, Michael Goesele, Richard Newcombe, and
Zhaoyang Lv. Neural 3d video synthesis from multi-view
video. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR), pages 5521—
5531, 2022. 5

Youtian Lin, Zuozhuo Dai, Siyu Zhu, and Yao Yao.
Gaussian-flow: 4d reconstruction with dynamic 3d gaus-
sian particle. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), pages
21136-21145,2024. 3

Youtian Lin, Zuozhuo Dai, Siyu Zhu, and Yao Yao.
Gaussian-flow: 4d reconstruction with dynamic 3d gaus-
sian particle. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 21136—
21145, 2024. 1

Ruoshi Liu, Rundi Wu, Basile Van Hoorick, Pavel Tok-
makov, Sergey Zakharov, and Carl Vondrick. Zero-1-to-3:
Zero-shot one image to 3d object, 2023. 6

Jonathon Luiten, Georgios Kopanas, Bastian Leibe, and
Deva Ramanan. Dynamic 3d gaussians: Tracking by per-
sistent dynamic view synthesis. In 3DV, 2024. 1

Jonathon Luiten, Georgios Kopanas, Bastian Leibe, and
Deva Ramanan. Dynamic 3d gaussians: Tracking by per-
sistent dynamic view synthesis. In 2024 International Con-
ference on 3D Vision (3DV), pages 800-809. IEEE, 2024. 3
Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik,
Jonathan T Barron, Ravi Ramamoorthi, and Ren Ng. Nerf:
Representing scenes as neural radiance fields for view syn-
thesis. arxiv, 2020. 1

Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik,
Jonathan T. Barron, Ravi Ramamoorthi, and Ren Ng. NeRF:
Representing scenes as neural radiance fields for view syn-
thesis. In ECCV, 2020. 2

Makoto Okabe, Yasuyuki Matsushita, and Takeo Igarashi.
Fluid volume reconstruction from multi-view video. In /IEEE
International Conference on Computer Vision (ICCV), 2015.
2

Keunhong Park, Utkarsh Sinha, Jonathan T Barron, Sofien
Bouaziz, Dan B Goldman, Steven M Seitz, and Ricardo
Martin-Brualla. Nerfies: Deformable neural radiance fields.
In CVPR,2021. 1,2,5

Keunhong Park, Utkarsh Sinha, Peter Hedman, Jonathan T.
Barron, Sofien Bouaziz, Dan B. Goldman, Ricardo Martin-
Brualla, and Steven M. Seitz. Hypernerf: A higher-
dimensional representation for topologically varying neural
radiance fields. In CVPR, pages 8151-8161, 2021. 2
Keunhong Park, Utkarsh Sinha, Peter Hedman, Jonathan T
Barron, Sofien Bouaziz, Dan B Goldman, Ricardo Martin-
Brualla, and Steven M Seitz. Hypernerf: A higher-
dimensional representation for topologically varying neural
radiance fields. arXiv, 2021. 1

Albert Pumarola, Enric Corona, Gerard Pons-Moll, and
Francesc Moreno-Noguer. D-nerf: Neural radiance fields for
dynamic scenes. In CVPR, 2021. 1

Adria Pumarola, Enric Corona, Gerard Pons-Moll, Javier
Romero, and Francesc Moreno-Noguer. D-NeRF: Neural ra-
diance fields for dynamic scenes. In CVPR, pages 10318-
10327, 2021. 5,7

10

[44]

(45]

[40]

(47]

(48]

[49]

(50]

[51]

(52]

(53]

[54]

[55]

[56]

(571

Sara Fridovich-Keil and Giacomo Meanti, Frederik Rahbak
Warburg, Benjamin Recht, and Angjoo Kanazawa. K-planes:
Explicit radiance fields in space, time, and appearance. In
CVPR, 2023. 1,4,5,7

Connor Schenck and Dieter Fox. Spnets: Differentiable
fluid dynamics for deep neural networks. In arXiv preprint
arXiv:1806.06094, 2018. 2

Jos Stam. Stable fluids. In Proceedings of SIGGRAPH 99,
pages 121-128, 1999. 2

Demetri Terzopoulos, John Platt, Alan Barr, and Kurt Fleis-
cher. Elastically deformable models. In Computer Graphics
(Proceedings of SSIGGRAPH ’87), pages 205-214, 1987. 2
Stefan Wiewel, Byungsoo Kim, and Nils Thuerey. Latent
space physics: Towards learning the temporal evolution of
fluid simulations. In Computer Graphics Forum (Eurograph-
ics), pages 71-82, 2019. 2

Guanjun Wu, Taoran Yi, Jiemin Fang, Lingxi Xie, Xiaopeng
Zhang, Wei Wei, Wenyu Liu, Qi Tian, and Xinggang Wang.
4d gaussian splatting for real-time dynamic scene render-
ing. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR), 2024. arXiv
preprint arXiv:2310.08528. 1, 3,4,5,7

Chengyang Xie, Qiang Liu, Xinyue Zhang, Wenhao Xu,
Jianfeng He, and Yifan Liu. Splatflow: Self-supervised scene
flow estimation with 3d gaussian splatting. arXiv preprint
arXiv:2410.12345,2024. 3

Tianyi Xie, Zeshun Zong, Yuxing Qiu, Xuan Li, Yutao Feng,
Yin Yang, and Chenfanfu Jiang. Physgaussian: Physics-
integrated 3d gaussians for generative dynamics. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), pages 4389-4398, 2024. 3
Ziyi Yang, Xinyu Gao, Wen Zhou, Shaohui Jiao, Yuqing
Zhang, and Xiaogang Jin. Deformable 3d gaussians for
high-fidelity monocular dynamic scene reconstruction. arXiv
preprint arXiv:2309.13101, 2023. 1,3, 5,7

David Junhao Zhang, Roni Paiss, Shiran Zada, Nikhil
Karnad, David E. Jacobs, Yael Pritch, Inbar Mosseri,
Mike Zheng Shou, Neal Wadhwa, and Nataniel Ruiz. Re-
capture: Generative video camera controls for user-provided
videos using masked video fine-tuning, 2024. 8

H. Zhang, X. Liu, Y. Gao, Y. Wang, and B. Zhu. Fluid-
nexus: Neural video-based fluid reconstruction and predic-
tion. arXiv preprint arXiv:2404.01563, 2024. 2

Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman,
and Oliver Wang. The unreasonable effectiveness of deep
features as a perceptual metric. In CVPR, 2018. 6

Xinjie Zhang, Zhening Liu, Yifan Zhang, Xingtong Ge,
Dailan He, Tongda Xu, Yan Wang, Zehong Lin, Shuicheng
Yan, and Jun Zhang. Mega: Memory-efficient 4d
gaussian splatting for dynamic scenes. arXiv preprint
arXiv:2410.13613, 2024. 10.48550/arXiv.2410.13613. 3
Ruijie Zhu, Yanzhe Liang, Hanzhi Chang, Jiacheng Deng,
Jiahao Lu, Wenfei Yang, Tianzhu Zhang, and Yongdong
Zhang. Motiongs: Exploring explicit motion guidance for
deformable 3d gaussian splatting. In Advances in Neural In-
formation Processing Systems (NeurlPS) 2024, 2024. 3

	Introduction
	Related Work
	Dynamical Formulations
	Dynamic Scene Representations
	Dynamical Gaussian Methods

	Method
	Overview
	Spatiotemporal Feature Encoding
	Neural Dynamical Law
	Gaussian Waypoints for Motion Stabilization
	Rendering and Objective

	Experiments
	Experimental Setup
	Compositional and Controllable Dynamics
	Ablations and Analysis

	Discussion
	Conclusion

